Download applications of big data analytics PDF/ePub eBooks with no limit and without survey . Instant access to millions of titles from Our Library and it’s FREE to try!

Note:! If the content not Found, you must refresh this page manually or just wait 15 second to this page refresh automatically. As alternative try our Book Search Engine, click here

Applications Of Big Data Analytics


Author : Mohammed M. Alani
language : en
Publisher: Springer
Release Date : 2018-07-23


Download Applications Of Big Data Analytics written by Mohammed M. Alani and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-23 with Computers categories.


This timely text/reference reviews the state of the art of big data analytics, with a particular focus on practical applications. An authoritative selection of leading international researchers present detailed analyses of existing trends for storing and analyzing big data, together with valuable insights into the challenges inherent in current approaches and systems. This is further supported by real-world examples drawn from a broad range of application areas, including healthcare, education, and disaster management. The text also covers, typically from an application-oriented perspective, advances in data science in such areas as big data collection, searching, analysis, and knowledge discovery. Topics and features: Discusses a model for data traffic aggregation in 5G cellular networks, and a novel scheme for resource allocation in 5G networks with network slicing Explores methods that use big data in the assessment of flood risks, and apply neural networks techniques to monitor the safety of nuclear power plants Describes a system which leverages big data analytics and the Internet of Things in the application of drones to aid victims in disaster scenarios Proposes a novel deep learning-based health data analytics application for sleep apnea detection, and a novel pathway for diagnostic models of headache disorders Reviews techniques for educational data mining and learning analytics, and introduces a scalable MapReduce graph partitioning approach for high degree vertices Presents a multivariate and dynamic data representation model for the visualization of healthcare data, and big data analytics methods for software reliability assessment This practically-focused volume is an invaluable resource for all researchers, academics, data scientists and business professionals involved in the planning, designing, and implementation of big data analytics projects. Dr. Mohammed M. Alani is an Associate Professor in Computer Engineering and currently is the Provost at Al Khawarizmi International College, Abu Dhabi, UAE. Dr. Hissam Tawfik is a Professor of Computer Science in the School of Computing, Creative Technologies & Engineering at Leeds Beckett University, UK. Dr. Mohammed Saeed is a Professor in Computing and currently is the Vice President for Academic Affairs and Research at the University of Modern Sciences, Dubai, UAE. Dr. Obinna Anya is a Research Staff Member at IBM Research – Almaden, San Jose, CA, USA.

Big Data Analytics


Author : Saumyadipta Pyne
language : en
Publisher: Springer
Release Date : 2016-10-12


Download Big Data Analytics written by Saumyadipta Pyne and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-12 with Computers categories.


This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics.

Big Data Analytics Beyond Hadoop


Author : Vijay Srinivas Agneeswaran
language : en
Publisher: FT Press
Release Date : 2014-05-15


Download Big Data Analytics Beyond Hadoop written by Vijay Srinivas Agneeswaran and has been published by FT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-15 with Computers categories.


Master alternative Big Data technologies that can do what Hadoop can't: real-time analytics and iterative machine learning. When most technical professionals think of Big Data analytics today, they think of Hadoop. But there are many cutting-edge applications that Hadoop isn't well suited for, especially real-time analytics and contexts requiring the use of iterative machine learning algorithms. Fortunately, several powerful new technologies have been developed specifically for use cases such as these. Big Data Analytics Beyond Hadoop is the first guide specifically designed to help you take the next steps beyond Hadoop. Dr. Vijay Srinivas Agneeswaran introduces the breakthrough Berkeley Data Analysis Stack (BDAS) in detail, including its motivation, design, architecture, Mesos cluster management, performance, and more. He presents realistic use cases and up-to-date example code for: Spark, the next generation in-memory computing technology from UC Berkeley Storm, the parallel real-time Big Data analytics technology from Twitter GraphLab, the next-generation graph processing paradigm from CMU and the University of Washington (with comparisons to alternatives such as Pregel and Piccolo) Halo also offers architectural and design guidance and code sketches for scaling machine learning algorithms to Big Data, and then realizing them in real-time. He concludes by previewing emerging trends, including real-time video analytics, SDNs, and even Big Data governance, security, and privacy issues. He identifies intriguing startups and new research possibilities, including BDAS extensions and cutting-edge model-driven analytics. Big Data Analytics Beyond Hadoop is an indispensable resource for everyone who wants to reach the cutting edge of Big Data analytics, and stay there: practitioners, architects, programmers, data scientists, researchers, startup entrepreneurs, and advanced students.

Handbook Of Big Data Analytics


Author : Wolfgang Karl Härdle
language : en
Publisher: Springer
Release Date : 2018-07-20


Download Handbook Of Big Data Analytics written by Wolfgang Karl Härdle and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-20 with Computers categories.


Addressing a broad range of big data analytics in cross-disciplinary applications, this essential handbook focuses on the statistical prospects offered by recent developments in this field. To do so, it covers statistical methods for high-dimensional problems, algorithmic designs, computation tools, analysis flows and the software-hardware co-designs that are needed to support insightful discoveries from big data. The book is primarily intended for statisticians, computer experts, engineers and application developers interested in using big data analytics with statistics. Readers should have a solid background in statistics and computer science.

Big Data Analytics Methods And Applications


Author : Jovan Pehcevski
language : en
Publisher:
Release Date :


Download Big Data Analytics Methods And Applications written by Jovan Pehcevski and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.




Big Data Analytics And Cloud Computing


Author : Marcello Trovati
language : en
Publisher: Springer
Release Date : 2016-01-12


Download Big Data Analytics And Cloud Computing written by Marcello Trovati and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-01-12 with Computers categories.


This book reviews the theoretical concepts, leading-edge techniques and practical tools involved in the latest multi-disciplinary approaches addressing the challenges of big data. Illuminating perspectives from both academia and industry are presented by an international selection of experts in big data science. Topics and features: describes the innovative advances in theoretical aspects of big data, predictive analytics and cloud-based architectures; examines the applications and implementations that utilize big data in cloud architectures; surveys the state of the art in architectural approaches to the provision of cloud-based big data analytics functions; identifies potential research directions and technologies to facilitate the realization of emerging business models through big data approaches; provides relevant theoretical frameworks, empirical research findings, and numerous case studies; discusses real-world applications of algorithms and techniques to address the challenges of big datasets.

Innovative Applications Of Big Data In The Railway Industry


Author : Kohli, Shruti
language : en
Publisher: IGI Global
Release Date : 2017-11-30


Download Innovative Applications Of Big Data In The Railway Industry written by Kohli, Shruti and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-30 with Computers categories.


Use of big data has proven to be beneficial within many different industries, especially in the field of engineering; however, infiltration of this type of technology into more traditional heavy industries, such as the railways, has been limited. Innovative Applications of Big Data in the Railway Industry is a pivotal reference source for the latest research findings on the utilization of data sets in the railway industry. Featuring extensive coverage on relevant areas such as driver support systems, railway safety management, and obstacle detection, this publication is an ideal resource for transportation planners, engineers, policymakers, and graduate-level engineering students seeking current research on a specific application of big data and its effects on transportation.